School of Chemical and Process Engineering (SCAPE)

Faculty of Engineering

Experience and Limitations found with X-ray Fluorescence (XRF) Analysis on Biomass Fuels, Low Grade Coal and Agglomerates [Work in Progress]

Author(s)

Mr Stephen Chilton & Dr William Nimmo

Introduction

Bubbling fluidised bed combustor

- •350kW thermal
- •Silica sand
- •0.5m² x 0.2-0.3m bed
- •30-35 Kg/hr fuel flow
- •Approx. 9000L/min air
- •800-900°C

Measurements

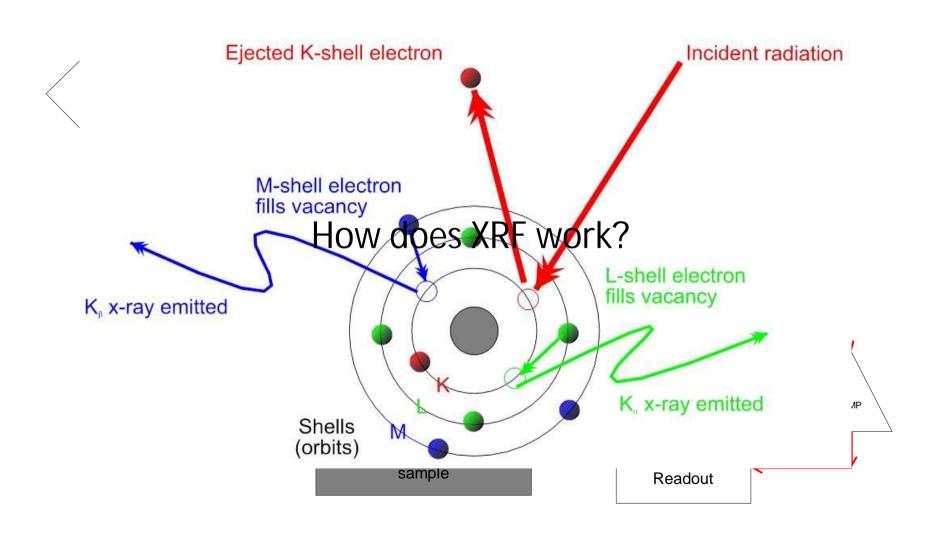
- •Analysers [O₂/NO_x/SO₂/CO/CO₂]
- Labview
 - Pressure
 - Temperature
- •Fly ash
- Bottom ash
- Bed
- Agglomerates

Low grade Fuel(s)

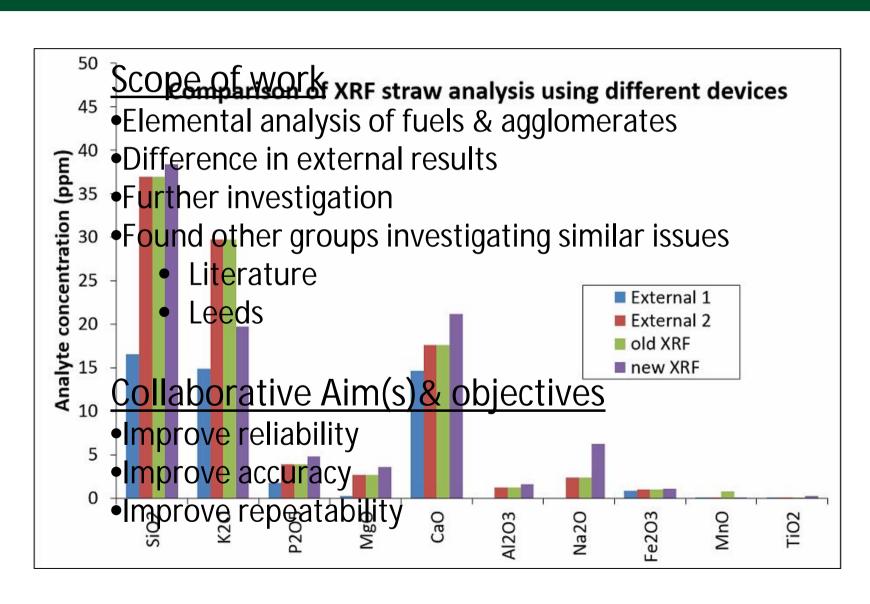
3		S (wt%)	Ash (wt%)	HHV (MJ/Kg)	Sodium %	Magnesium%	potassium %	iron%	manganese%	aluminium %	Calcium %	Silicon %	Phosphorus %	Titanium %	S
	Peanut	<0.1	4.04	19.14	21.58	5.62	2.12	3.17	0.24	9.07	8.36	44.01	4.87	1.21	
Also .	Wheat Straw	<0.1	8.26	15.69	9.61	6.31	6.61	4.34	1.69	7.48	22.69	39.77	2.24	0.46	
<i>paquaquiqua</i>	Miscanthus	<0.1	4.76	17.15	16.18	4.77	1.65	0.90	0.17	0.80	3.92	55.98	5.25	0.05	
min 10 a	Wood	<0.1	1.14	17.65	11.65	3.24	2.95	2.60	0.14	1.42	13.52	56.54	3.85	0.07	imine imine in
MADE IN ENGI	Oat	<0.1	4.23	17.34	19.76	3.60	6.26	1.04	0.06	1.58	21.14	38.38	4.76	0.26	70 80 9
02 52 E	Coal A	6.73	39.91	16.60	3.79	4.79	4.89	22.62	0.02	26.70	3.01	51.92	0.18	2.61	1 82 82
A SECOND	Coal B	6.57	29.30	17.94	-	-	-	-	-	-	-	-	-	-	
1	Coal C	5.84	35.44	17.29	4.67	4.55	5.45	19.97	0.02	24.19	3.63	48.84	0.18	1.95	
134	Coal D	3.94	35.18	17.66	-	-	-	-	-	-	-	-	-	-	A.A.
4	Coal E	5.14	27.43	18.27	4.87	5.46	4.66	17.18	0.02	18.77	3.72	48.73	0.18	2.98	北人
0	Coal F	4.22	25.30	19.53	-	-	-	-	-	-	-		-	-	AT A
	Coal G	3.66	25.14	19.45	6.73	7.02	4.00	22.85	0.02	18.50	5.05	50.93	0.20	2.84	
	Coal H	3.38		20.89	-	-	-	-	-	-	-	-	-	-	
N. J.	Coall	4.52		16.50	9.54	7.71	3.68	17.01	0.03	21.18	5.21	56.11	0.19	2.18	
	Coal J	3.56	35.27	19.56					义	悠					

UNIVERSITY OF LEEDS

Options

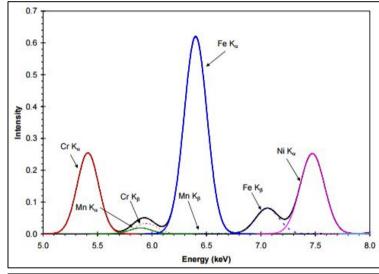

- How to analyse slag, agglomerates, fouling samples?
 - Optical Emission spectrometry (OES)
 - Atomic Absorption Spectrometry (AAS)
 - Inductively Coupled Plasma (ICP-OES)
 - Wet chemistry
- Factors of choice: Accuracy
 - cost
 - Complexity
 - Training

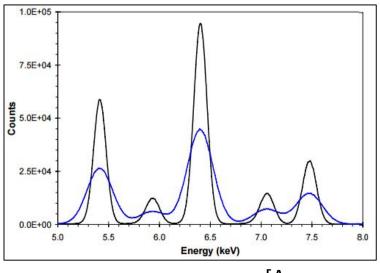
- Repeatability
- Portability
- Result?



X-ray fluorescence (XRF)

Investigation & scope

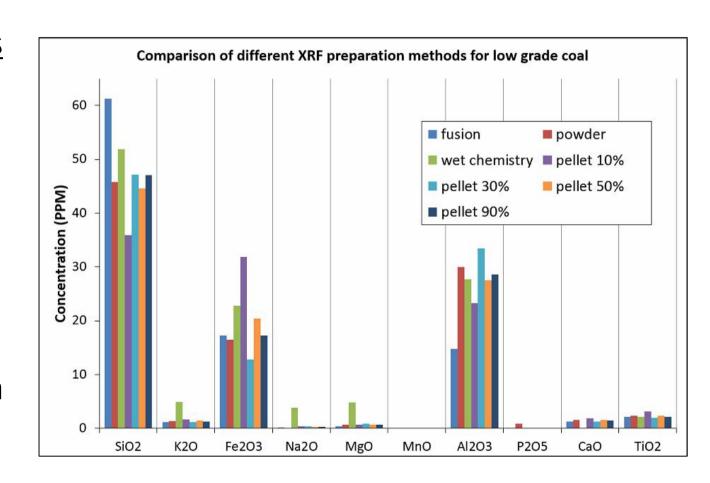




XRF limiting factors

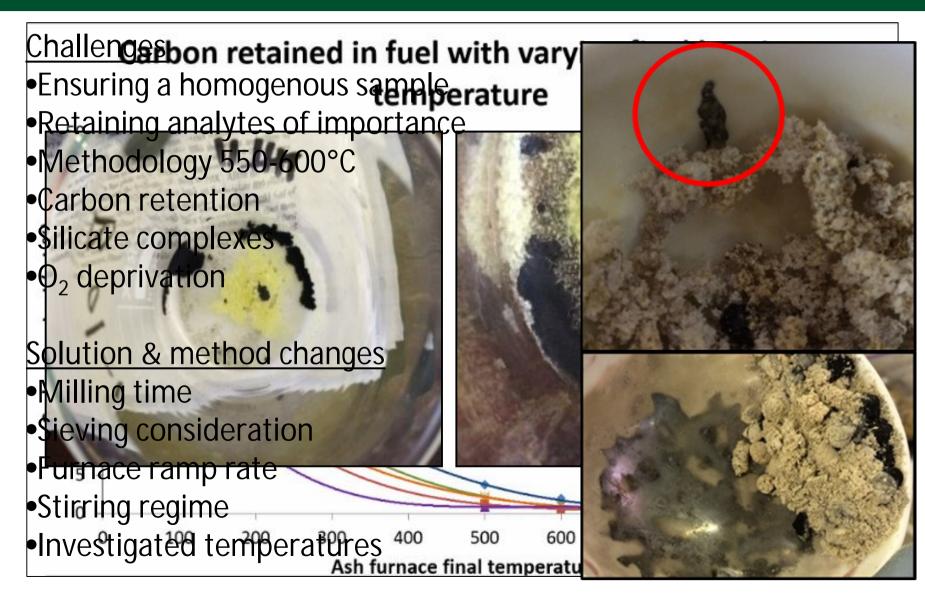
Factors effecting XRF results

- User ability/training
- Type of analysis
 - Quantitative
 - Semi-Quantitative
 - Qualitative
- Power/size of device
- •XRF Software/algorithms
 - Standard-less fundamental parameters (SLFP)
 - normalisation
- Sample preparation
- Sample chemistry/physiology
- Methodology


Sample preparation

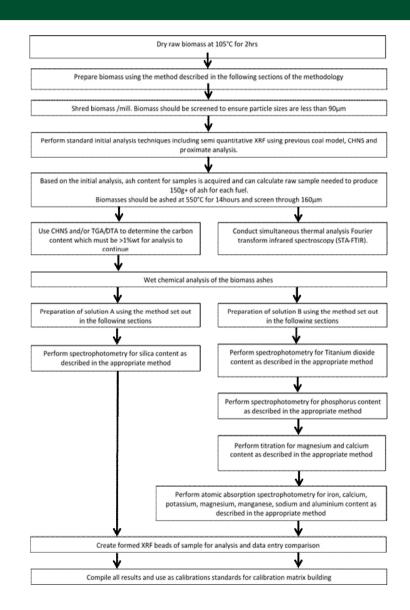
Different methods

- Fusions
- Powders
- Push pellets


Factors

- Particle size
- Optical distance
- Bulk density
- X-ray penetration
- Homogeneity

Ashing


Method development

Investigated

- Carbon content
- Particle size
- Wet chemistry method
- Ashing method
- Device variance
- Program parameters
- Making own standards

Method development

- Systematic method
- Work with other groups
- •Reduce result differences

Conclusions

- Use a standardised method for comparison
- Use results with caution
- Reduced errors in repetition
- Work in progress
- Larger community addressing problems
- Can XRF be used for low grade fuels and agglomerates?

Sample preparation	(Loubser and Verryn, 2008, Anzelmo, 2009, Gazulla et al., 2009, Stankova et al., 2010, Wang et al., 2010, Gazulla et al., 2010, Matsunami et al., 2010, Pease, 2013, Le Roux and De Vleeschouwer, 2010, LUO et al., 2011)					
XRF analysis technique(s) & methodology development	(Gazulla et al., 2010, Fernández-Ruiz et al., 2010, Robinson et al., 2009, Andersen et al., 2013, Morgan et al., 2015, Teng et al., 2013, de Jonge and Vogt, 2010, Terzano et al., 2013)					
Review(s)	(Evans et al., 2014, Taylor et al., 2014, Clough et al., 2014, Gibson et al., 2014, Butler et al., 2015)					

Thank you

Any questions?